

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION - JULY 2023

Program: S.Y.B. Tech (Civil)

Course Code: BS-BTC401

Course Name: Probability and Statistics

Duration: 3 Hours

Maximum Points: 100

Semester: IV

Note:

1. Attempt Any Five Questions

2. Answers to the sub questions should be grouped together

					Ç	uesti	ons					Points	CO	BL	Mo dule
1	a	The probabilation $\frac{1}{4}$. If he shot target exactly target at leas	oots 1	0 tim	es, wl	nat is	the p	robab	ility	that h	e hits the	6	COI	BL.5	2
	b	The equation and $4x - 5y$						n are	202	<i>x</i> −9 <i>y</i> ·	-107 = 0	6	.CO1	BL5	1
	С	Find Mean a	nd Va	rianc	e of P	oisson	n Dist	ributi	on			8	CO1	BL3	2
2	a	A manufactor finds the S.I change the variation in to of 150 bulbs changing the	O. of proce the life gave	the lines, it is a constant the second the s	fe of I f the amps.	lamps new In ad	to be proce opting	e 100 ess ro g a ne	hour sults w pro	s. He in a ocess,	wants to smaller a sample	6	CO2	BL5	4
	b	Find Karl Pe employed an	arson d prof	's coe fit obt	ained	from	the fo	llowi	ng da	ta.	oital	6	COI	BL2	1
		Capital (In Crore) Profit (In	10	20	30	10	50	20	70	50		-			
		Crore)		4	0	10	13	20	22	30					

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION - JULY 2023

Į						
-	С	Two independent samples of sizes 8 and 7 contained the following values	8	CO2	BL3	5
		Sample I 19 17 15 21 16 18 16 14				
		Sample II 15 14 15 19 15 18 16				
		Is the difference between the sample means significant?	····			
3	a	The mean number of bacteria per milliliter of a liquid is known to be 6. Find the probability that in 1 milliliter of the liquid, there will be: (i) 0 (ii) 1 (iii) 2 (iv) 3 (v) less than 4 (vi) 6 bacteria.	6	C03	BL4	2
}	b	A random variable X has the following probability distribution:	6	CO1	BL5	1
		X 1 2 3 4 5 6 7			<u> </u>	
		P(X) k $2k$ $3k$ k^2 $k^2 + k$ $2k^2$ $4k^2$				
	_	Determine (i) k (ii) $P(X \le 4)$ (iii) $P(X > 3)$				
	С	In the usual notation, prove the Spearman's formula for Rank correlation	8	COI	BL5	1
-		$R = 1 - \frac{6}{n(n^2 - 1)} \sum_{i=1}^{n} d_i^2$, where $d_i = x_i - y_i$				
4	a	From the following data, compute the rank correlation.	6	COI	BL5	1
		X 82 68 75 61 68 73 85 68				
				,		- 1
		Y 81 71 71 68 62 69 80 70				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION - JULY 2023

				,		
		students scoring (i) less than 50 marks (ii) more than 65 marks.				
	С	If x and y are two correlated variables with the same standard deviation and having coefficient of correlation r. Show that the correlation coefficient between x and $x + y$ is $\sqrt{\frac{1+r}{2}}$.	8	CO1	BL3	1
5	a	Find constant k such that the function $f(x) = \begin{cases} k(1-x^2), & \text{if } 0 \le x \le 1\\ 0 & \text{elsewhere} \end{cases}$ is the probability density function. Also find $P(0.1 \le X \le 0.2)$ and $P(X \ge 0.5)$	6	COI	BL4,5	3
	b	The S.D of a random sample 0f 1000 is found to be with 2.6 and the S.D of another random sample of 500 is 2.7. Assuming the samples to be independent, find whether the two samples could have come from population with the same S.D?	6	C02	BL4	4
	С	In a certain factory turning out razor blades, there is a small chance of 0.002 for any blade to the defective. The blades are supplied in a packet of 10, Use Poisson distribution to calculate the approximate number of packets containing no defective, one defective and two defective blades respectively in a consignment of 10,000 packets.	8	CO2	BL2, BL4	2
5	a	Certain pesticide is packed into bags by a machine. A random sample of 10 bags is drawn and their contents are found to weigh (in kg) as follows 50, 49, 52, 44, 45, 48, 46, 45, 49, 45 Test if average packing can be taken to be 50 kg at 5% LOS.	6	C03	BL5	5
	b	The coefficient of rank correlation between marks in two subjects obtained by a group of students is 0.8. If the sum of squares of the differences in ranks is 33. Find the number of students in the group.	6	COI	BL3	1
	С	For normal distribution 30% items are below 45 and 8% items are above 64. Find the mean and variance of the normal distribution	8	COI	BL3, BL5	3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION - JULY 2023

7	a	Two rand	lom samp	le gave	e the fo	llow	ing d	lata				······································	6	CO2	BL2,	4
			Sample	No	Size	1	Mean	7	Varia	nce					BL3	
			1		1000	6	7.42	12	2.58							
			2		1200	6	7.25	2	2.5	-	-					
	b	Fit a Bind	omial distr	ributio	n to th	e fol		ıg da					6	CO3	BL5	1
			x 0		1	2		3		4	_					
			f 1	22	60	15	 -	2		1						
	С	_	s were cho The frequ							ando	m		8	CO3	BL1, BL3	5
		Digit	0 1	2	3	4	5	6	7	8	9	Total				
		Frequency	y 28 2	9 33	31	26	35	32	30	31	25	300				
		Using	$\frac{1}{2}$ $\frac{1}$	examir	ne the l	ıypo	thesis	tha	<u>l</u>	l						

Chi-Square (1/2) Distribution

Degree's of		-17/4			and the second second second	istribution light of Cri	tical Value			
Freedom	0.995	0.99	0.975		0.90	0.10	0.05	0.025	0.01	0.005
1 2 3 4 5	0.010 0.072 0.207	0.020 0.115 0.297	0.001 0.051 0.216 0.484	0.004 0.103 0.352 0.711	0.211 0.584 1.064	2.706 4.605 6.251 7.779		5.024 7.378 9.348 11.143	6.635 9.210 11.345	7.879 10.597 12.838
6 7 8 9	0.412 0.676 0.989 1.344 1.735 2.156	0.554 0.872 1.239 1.646 2.088 2.558	0.831 1.237 1.690 2.180 2.700	1.145 1.635 2.167 2.733 3.325	1.610 2.204 2.833 3.490 4.168	9.236 10.645 12.017 13.362 14.684	11.071 12.592 14.067 15.507 16.919	12.833 14.449 16.013 17.535 19.023	13.277 15.086 16.812 18.475 20.090 21.666	14.860 16.750 18.548 20.278 21.955 23.589
11 12 13 14 15	2.603 3.074 3.565 4.075 4.601	3.053 3.571 4.107 4.660 5.229	3.247 3.816 4.404 5.009 5.629 6.262	3.940 4.575 5.226 5.892 6.571 7.261	4.865 5.578 6.304 7.042 7.790 8.547	15.987 17.275 18.549 19.812 21.064 22.307	18.307 19.675 21.026 22.362 23.685 24.996	20.483 21.920 23.337 24.736 26.119	23.209 24.725 26.217 27.688 29.141	25.188 26.757 28.299 29.819 31.319
16 17 18 19 20	5.142 5.697 6.265 6.844 7.434	5.812 6.408 7.015 7.633 8.260	6,908 7,564 8,231 8,907 9,591	7.962 8.672 9.390 10.117 10.851	9.312 10.085 10.865 11.651 12.443	23.542 24.769 25.989 27.204 28.412	26.296 27.587 28.869 30.144 31.410	27.488 28.845 30.191 31.526 32.852 34.170	30.578 32.000 33.409 34.805 36.191	32.801 34.267 35.718 37.156 38.582
21 22 23 24 25	8.034 8.643 9.260 9.886 10.520	8.897 9.542 10.196 10.856 11.524	10.283 10.982 11.689 12.401 13.120	11.591 12.338 13.091 13.848 14.611	13.240 14.042 14.848 15.659 16.473	29.615 30.813 32.007 33.196 34.382	32.671 33.924 35.172 36.415 37.652	35.479 36.781 38.076 39.364 40.646	37.566 38.932 40.289 41.638 42.980	39.997 41.401 42.796 44.181 45.559
26 27 28 29 30	11.160 11.808 12.461 13.121 13.787	12.198 12.879 13.565 14.257 14.954	13.844 14.573 15.308 16.047 16.791	15.379 16.151 16.928 17.708 18.493	17.292 18.114 18.939 19.768 20.599	35.563 36.741 37.916 39.087 40.256	38.885 40.113 41.337 42.557 43.773	41.923 43.194 44.461 45.722 46.979	44.314 45.642 46.963 48.278 49.588	46.928 48.290 49.645 50.993 52.336
40 50 60 70 80	20.707 27.991 35.534 43.275 51.172	22.164 29.707 37.485 45.442 53.540	24.433 32.357 40.482 48.758 57.153	26.509 34.764 43.188 51.739 60.391	29.051 37.689 46.459 55.329 64.278	51.805 63.167 74.397 85.527 96.578	55.758 67.505 79.082 90.531 101.879	59.342 71.420 83.298 95.023 106.629	50.892 63.691 76.154 88.379 100.425	53.672 66.766 79.490 91.952 104.215
)()	59.196	61.754	65 647	69 126	72 201	100		100.029	112.329	116.321

107.565

118.498

113.145

124.342

118.136

129.561

124.116

135.807

128.299

140.169

100

67.328

61.754 70.065

65.647 74.222

69.126 77.929

73.291

82.358

Table of the Student's t-distribution

The table gives the values of t_{acc} where $Pr(T_s > t_{acc}) = a$, with v degrees of freedom

A Die			A C	are and the same		C. Crimina	Kathan Ma
ν, α	0.1	0.05	0.025	0.01	0.005	0.001	0.0005
VV							
1	3.078	6,314	12.076	31.821	63.657	318.310	636.620
2	1.886	2.920	4.303	6.985	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1,476	2.015	2.571	3.365	4.032	5.893	6.869
б	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2,998	3,499	4.785	5.408
8	1.397	1.860	2.306	2.896	3,355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4,144	4,587
11	1.363	1.798	2.201	2.718	3.106	4.025	4,437
12	1.356	1.782	2.179	2,681	3,055	3.930	4.318
13	1.350	1,771	2,160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1,337	1.746	2.120	2 583	2,921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1,330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2,539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23 İ	1.319	1.714	2.069	2.500	2.807	3.485	3,767
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	1,315	1.706	2.056	2.479	2,779	3.435	3.707
27	1.314	1,703	2.052	2.473	2.771	3,421	3.690
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	1.303	1.684	2.021	2.423	2.704	3,307	3.551
50	1.296	1.671	2.000	2.390	2.660	3.232	3,460
20	1.289	1.658	1.980	2.358	2.617	3.160	3.373
*	1.282	1 645	1.960	2.326	2.576	3.090	3.291

Standard Normal Distribution Table

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .031 0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .077 0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .110 0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .144 0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .184 0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .218 0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .251 0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .282 0.8 .2881 .2910		Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .079 0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .110 0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .144 0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .184 0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .218 0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .251 0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .282 0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3515 .3363 .336 1.0 .3413 .34343		0.0	.0000	.0040	.0080	177				1	.0319	.0359
0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .114 0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .144 0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .184 0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .219 0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .251 0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .282 0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .316 1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .355 1.1 .3643 .3665				1			l				.0714	.0753
0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .144 0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .188 0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .219 0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .251 0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .282 0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .310 0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3665 1.0 .3413 .3465 .3686 .3708 .3729 .3749 .3770 .3790 .381 1.2 .3849 .3869		0.2	l .		1			i		1	.1103	.1141
0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .18 0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .219 0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .251 0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .282 0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .310 0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .366 1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .359 1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .381 1.2 .3849 .3869		0.3	1				1		l .		.1480	.1517
0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .216 0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .251 0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .282 0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .310 0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .366 1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .355 1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .381 1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .399 1.3 .4032 .4049		0.4	.1554	l .							.1844	.1879
0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .251 0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .282 0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .310 0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .336 1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .359 1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .381 1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .398 1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4146 1.4 .4192 .4207		0.5	.1915	.1950	.1985	.2019	.2054				.2190	.2224
0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .282 0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .310 0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .336 1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .359 1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .381 1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .399 1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .416 1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .430 1.5 .4332 .4345		0.6	.2257	.2291	.2324	.2357	.2389				.2517	.2549
0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .316 0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .336 1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .350 1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .381 1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .398 1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .416 1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .430 1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4425 1.5 .4332 .4463		0.7	.2580	.2611	.2642	.2673	.2704	1			.2823	.2852
0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .336 1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .359 1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .381 1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .398 1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .416 1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .430 1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .442 1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .452 1.7 .4554 .4564		0,8	.2881	.2910	.2939	.2967	.2995	•	1		.3106	.3133
1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .359 1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .381 1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3993 1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4161 1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .430 1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .442 1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .453 1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .462 1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .486 <td></td> <td>0.9</td> <td>.3159</td> <td>.3186</td> <td>.3212</td> <td>.3238</td> <td>.3264</td> <td>1</td> <td></td> <td></td> <td>.3365</td> <td>.3389</td>		0.9	.3159	.3186	.3212	.3238	.3264	1			.3365	.3389
1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .381 1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3980 1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4161 1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .430 1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .442 1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .453 1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .462 1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .469 1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .476 <td></td> <td></td> <td>.3413</td> <td>.3438</td> <td>.3461</td> <td>.3485</td> <td>.3508</td> <td>.3531</td> <td>i .</td> <td></td> <td>.3599</td> <td>.3621</td>			.3413	.3438	.3461	.3485	.3508	.3531	i .		.3599	.3621
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3998 1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .416 1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .430 1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .442 1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .453 1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .462 1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .469 1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .476 2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .481		1.1	.3643	.3665	.3686	.3708	.3729		.3770		.3810	.3830
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4161 1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .430 1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .442 1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .453 1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .462 1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .466 1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .476 2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .481 2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850				.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .442 1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .453 1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .462 1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .469 1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .476 2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .481 2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .485 2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .488 2.3 .4893 .4896			!		.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .453 1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .462 1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .466 1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .476 2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .481 2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .485 2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .488 2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .491 2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .493			1		.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .462 1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .469 1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .476 2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .481 2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .485 2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .488 2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .491 2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .493 2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .495					.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .469 1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .476 2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .481 2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .485 2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .488 2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .491 2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .493 2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .495 2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .496			3	1	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .476 2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .481 2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .485 2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .488 2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .491 2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .493 2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .495 2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .496 2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973			.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .481 2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .485 2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .488 2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .491 2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .493 2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .495 2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .496 2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .497 2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4985 .498						.4664	.4671	.4678	.4686	.4693	.4699	.4706
2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .485 2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .488 2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .491 2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .493 2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .495 2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .496 2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .497 2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4985 .498 3.0 .4987 .4987 .4988 .4984 .4984 .4985 .4985 .498 3.					.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .488 2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .491 2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .493 2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .495 2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .496 2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .497 2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .498 2.9 .4981 .4982 .4983 .4984 .4984 .4985 .4985 .498 3.0 .4987 .4987 .4988 .4988 .4989 .4989 .4992 .4992 .4992 .4992 <td< td=""><td></td><td></td><td>.4772</td><td>.4778</td><td>.4783</td><td>.4788</td><td>.4793</td><td>.4798</td><td>.4803</td><td>.4808</td><td>.4812</td><td>.4817</td></td<>			.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .491 2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .493 2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .495 2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .496 2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .497 2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .498 2.9 .4981 .4982 .4983 .4984 .4984 .4985 .4985 .498 3.0 .4987 .4987 .4988 .4988 .4989 .4989 .4992 3.1 .4990 .4991 .4991 .4994 .4994 .4994 .4994 .4994 .4996 .4996 .4996 .4996 <t< td=""><td></td><td></td><td></td><td></td><td>.4830</td><td>.4834</td><td>.4838</td><td>.4842</td><td>.4846</td><td>.4850</td><td>.4854</td><td>.4857</td></t<>					.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4918 2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .493 2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .495 2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .496 2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .497 2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .498 2.9 .4981 .4982 .4983 .4984 .4984 .4985 .4985 .498 3.0 .4987 .4987 .4988 .4988 .4989 .4989 .4992 .4992 .4992 .4992 .4992 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4996 .4996				.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4932 2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .495 2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .496 2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .497 2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .498 2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4985 3.0 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .99 3.1 .4990 .4991 .4991 .4992 .4992 .4992 .4992 .4995 .4995 3.2 .4993 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4996 <			.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .495 2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .496 2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .497 2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .498 2.9 .4981 .4982 .4983 .4984 .4984 .4985 .4985 .4985 .498 3.0 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .99 3.1 .4990 .4991 .4991 .4992 .4992 .4992 .4992 .4992 .4995 .4995 .4996				.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4972 2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .498 2.9 .4981 .4982 .4983 .4984 .4984 .4985 .4985 .4985 3.0 .4987 .4987 .4988 .4988 .4989 4989 4989 .99 3.1 .4990 .4991 .4991 .4992 .4992 .4992 .4992 .4992 .4995 .4995 3.2 .4993 .4993 .4994 .4994 .4994 .4994 .4994 .4996			.4938		.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4989 2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4985 .4985 .4985 .4989 .4989 .4989 .4989 .4989 .4989 .4989 .4989 .4992 .4992 .4992 .4992 .4992 .4992 .4995 .4995 .4996					.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964
2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4985 .4985 3.0 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4989 3.1 .4990 .4991 .4991 .4992 .4992 .4992 .4992 .4992 3.2 .4993 .4993 .4994 .4994 .4994 .4994 .4994 .4994 .4996 <			.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974
2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4985 3.0 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4989 .4989 .4989 .4989 .4989 .4989 .4989 .4989 .4989 .4989 .4989 .4989 .4989 .4989 .4989 .4992 .4992 .4992 .4992 .4992 .4992 .4992 .4993 .4995 .4996 .4994 .4994 .4994 .4994 .4996		1		.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.4981
3.1 .4990 .4991 .4991 .4991 .4992 .4992 .4992 .4992 .4992 .4992 .4992 .4992 .4992 .4992 .4992 .4992 .4992 .4992 .4992 .4992 .4992 .4992 .4993 .4995 .4996 .4994 .4994 .4994 .4994 .4994 .4996 <t< td=""><td></td><td></td><td></td><td></td><td>.4982</td><td>.4983</td><td>.4984</td><td>.4984</td><td>.4985</td><td>.4985</td><td>.4986</td><td>.4986</td></t<>					.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4986
3.2 .4993 .4994 .4994 .4994 .4994 .4994 .4994 .4994 .4995 .4995 .4996 3.3 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4996	-[_4987	.4987	.4987	4988	4988	4989	.4989	4989	.990	.49 0
3.2 .4993 .4993 .4994 .4994 .4994 .4994 .4994 .4995 .4995 .4996	ſ			.4991	.4991	.4991	.4992	.4992	.4992	.4992	.4993	.4993
1350 1350 14550						.4994	.4994	.4994	.4994	.4995	.4995	.4995
2.4 4007 4007 4007 4007 4007						.4996	.4996	.4996	.4996	.4996	.4996	.4997
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3.4	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4998
3.5 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998		3.5	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998

SARDAR PATEL COLLEGE OF ENGINEERING

19/7/23

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester Examinations: July 2023

Program: B.Tech. in Civil Engineering

Duration: 3 Hours

Course Code: PC-BTC402

Maximum Points: 100

Semester: IV

Course Name: Structural Mechanics

1. Attempt any FIVE questions out of SEVEN questions.

Answers to all sub questions should be grouped together. 2.

Figures to the right indicate full marks. 3.

Assume suitable data if necessary and state the same clearly. 4.

Q.No.	Questions	Points	co	BL	PI
Q.1(a)	A trapezoidal masonry dam is of height 15m. It has the top and bottom width of 4m and 8m respectively. The dam retains water on its vertical face to a depth of 15 m. Determine the maximum and minimum stresses developed at the base of the dam. The unit weight of masonry is 20 kN/m³ and that of water is 10 kN/m³.	10	1	4	1.1.1 1.3.1 2.4.1
Q.1(b)	Using Macaulay's method only, find the slope at C and vertical deflection at D for the beam supported and loaded as shown in figure below.	10	3	3,4	1.1.1 1.3.1 2.4.1
	A 20 kN/m 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				
Q.2(a)	State and explain Maxwell's reciprocal theorem.	05	2	2	1.3.1
Q.2(b)	For the frame loaded as shown in figure below a) Find the support reactions b) Draw AFD, SFD & BMD	15	2	3,4	1.3.1 2.1.3
	15 kN/m B 4 m 3m 20 kN 2m				
	AD				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations: July 2023

Q.3(a)	Find the slope and vertical deflection at the free end C for the beam supported and loaded as shown in figure below. <u>Use conjugate method only.</u>	10	3	3,4	1.3.1 2.1.3
	15 kN/m 15 kN/m A 3m B 2 m C				
Q.3(b)	Find the slope and vertical deflection at C for the beam supported and loaded as shown in figure below. <u>Use moment area method only.</u>	10	3	3,4	1.3.1 2.1.3
	30 kN 60 kN 40 kN A 2 m C 3 m D 3 m E 2 m				
Q.4(a)	For the pin jointed frame loaded as shown in figure below, find the horizontal deflection of joint E.	12	3	3,4	1.3.1 2.1.3
	3 m 3 m 3 m 3 m E				
Q.4(b)	Find the strain energy stored <u>due to bending moment only</u> for the beam loaded as shown in the figure below.	08	2	3,4	1.1.1 1.3.1 2.4.1
	5 kN 10 kN/m				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations: July 2023

	Locate the principal axes and find the principal moments of inertia for the angle section shown in figure below.	10	1	3,4	1.1.1
	100 mm 100 mm				2.4.1
	Harmova Vidya Fiberran's	137			
Q.5(b)	The angle section with dimensions shown below (same as given in Q. 5(a)) is subjected to a bending moment of 40 kN-m at 50 degrees to the positive X axis as shown in the figure. Find the location of the neutral axis and show it in the cross section. Find the maximum and minimum bending stresses and state their location in	10	4	4	1.1.1 1.3.1 2.4.1
Qolar	the cross section. (The properties of the cross section obtained in Q5(a) can be used. No need to calculate them again.)	10	1	3.4	11,1
	150 mm 150 mm 150 mm 150 mm				
	10 mm				
	10 mm		- C.E.		
Q.6(a)	The state of the s	10	3	3,4	1.3.1 2.1,3
	Determine the horizontal deflection of point A of the rigid jointed frame loaded as shown in figure below. 20 kN B 3 m 3 m 3 m 3 m 3 m 3 m 3 m		3	3,4	
Q:S(b),	Determine the horizontal deflection of point A of the rigid jointed frame loaded as shown in figure below. 20 kN/m 3 m 4 m A A A B A B C B C C C C C C C C C C	10			2.1,3
Q:5(b),	Determine the horizontal deflection of point A of the rigid jointed frame loaded as shown in figure below. 20 kN/m 3 m 3 m 4 m	10			2.1.3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations: July 2023

Q.6(b)	A timber column has a rectangular cross section of 150mmx200mm and length 3m with both the ends fixed. Find the Euler's crippling loads of the column. $Take\ E=2x10^5\ N/mm^2$	05	4	3,4	1.1.1 1.3.1 2.4.1
Q.6(c)	Find the crippling load using Rankine's formula for the cast iron column of hollow circular cross section with external diameter 100mm and internal diameter 80 mm and a length of 4m. The column is fixed at one end and hinged at the other end. Take $f_c=550$ MPa and Rankine's constant = $1/1600$.	05	4	3,4	1.1.1 1.3.1 2.4.1
Q.7(a)	For the frame loaded as shown in figure below a) Find the support reactions b) Draw AFD, SFD & BMD.	12	4	3,4	1.1.1 1.3.1 2.4.1
	20 kN/m B 3m C 4m				
Q.7(b)	What do you understand by the principal axes of a given cross section? Explain	03	1	2	1.3.1
Q.7(c)	What are the assumptions made in the classical theory of buckling?	05	4	2	1.3.1

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058.

End Semester Examinations, July 2023

Program: B.Tech. Civil Engineering

Course Code: PC-BTC403

Course Name: Concrete Technology

Duration: 3 Hour

Maximum points: 100

Semester: IV

Instructions:

Attempt any FIVE questions out of SEVEN questions 1.

2. Answers to all sub questions should be grouped together

3. Draw neat diagrams wherever required

Assume suitable data if necessary and state the clearly.

Que. No.	Descriptions			Points	со	BL	PI
Q1	visit. State the advanta	nponents of RMC plant of ges of RMC over conven- by Half-cell Potentiomet steel reinforcement?	tional concrete.	08 07	3	2	1.2.1 2.1.2
	(c) Write note on low h			05	1	2	1.2.1
	a. What are the tests	to be conducted on chemi	cal admixtures?	5	1	3	1.3.2
	b. Design concrete for 10262:2019 for the	or M40 grade using guid e following data.	lelines given in IS	15	2	2	2.3.1
Q2	Exposure condition: Moderate	Specific gravity of 20 mm aggregate — 2.74					
	Strength of cement OPC —53 grade	Workability — slump, 150 mm	Type of coarse aggregate — angular coarse aggregate	Specific gravity of 10 maggregate — 2.70			
	Zone of sand — II	Total moisture content M ₂ -0.5% & M ₁ -0.3%	Total moisture content in fine aggregate - 2.5 %	_	3 1 1 2 ic gravity ate — 2.7 ic gravity	_	fine
	from Que2 and chart at	tached at the end of mani		12		4	2.1.2
Q3	(b) What is core test of the procedure for cond	08	2	2	2.4.2		
		-	I Method; consider the	12	2	3	1.3.1
Q4	data related to the probability (b) State the important mixing.	8	1	2	2.3.1		

	(a) Enlist the various stages of concrete production and discuss curing of concrete in detail.	8	1	2	2.1.2
0.5	(b) Differentiate between	8	2	2	2.3.1
Q5	(i) Light weight concrete and ordinary concrete				
	(ii) Retarder and accelerators				
	(c) How will you check the workability of flowable concrete?	4	3	1	1.2.1
	(a) How High Performance concrete (HPC) is differ than normal	8	1	2	2.3.1
	concrete? Discuss various ways to improve the concrete performance.				
Q6	(b) Explain different methods of compaction with their suitability.			ļ	
	(c) How silica fume improve the performance of concrete?	8	3	3	1.3.2
	(b) Thew shipe teme improve the performance of concasts.	4	2	3	1.4.1
	Write explanatory notes on the following (any Four)				
	i) Cold weather concrete	5	3	2	1.3.1
1	ii) Rice husk ash	5	2	2	1.3.1
Q7	iii) Hydration products	5	3	2	1.3.1
!	iv) Alkali-silica reaction	5	1	2	1.3.1
	v) Carbonation of Concrete	5	1	2	1,3.1
	vi) self-compacting concrete	5	3	2	1.3.1

Table 1,2 and 3 for ACI Method Concrete Mix Design

(1) Dry Bulk Volume of coarse aggregatef unit volume of concrete as per ACI 211.1-91

Maximum size of aggregate	Bulk volume	Bulk volume of dry rodded CA lunit volume of concrete for fineness modulus of sand of	f dry rodded CA /unit volume fineness modulus of sand of	of concrete for
H	24	2.6	2.8	3.00
10	0.5	0,48	0.46	0.44
12.5	0.59	0.57	0.55	0.53
(25,40,50,70)	9.90	0.64	0.62	09 0
150	87	0,85	0.83	0.81

compressive strength of concrete, as per ACI211.1-91 (2) Relation between water/cement ratio & ayerage

(3) Requirements of ACI-318-89 for w/c ratio & strength for special exposure conditions

Effective water/cement ratio (by mass) Exposure condition Maximum w/c ratio, Minimum design normal density aggregate concrete aggregate concrete		0.38 (a) Exposed to fresh water 0.5 25 30 30	0.43 Concrete exposed to 0.45 30 freezing in a moist condition	0.48 0.4 For cerrosion protection of 0.4 33 reinforced concrete exposed to de school of editing sales, sea water
Average compressive strength at 28 days	MPa	45	A Park a district of the park and the park a	35 (30,25,20)

Table 4,5 and 6 for ACI Method Concrete Mix Design

(4) Recommended value of slump for various types of construction as per ACI 211.1-91

Range of stunp (mrn) 20.80 20-100 20-100 20-80 20-80 20-80 Reinforces foundation walls & footings Plain footings, substructure wall Beams & reinforced walls ype of construction Pavements & slabs Building columns Mass concrete

(5) Approximate requirements for mixing water & air content for different workabilities & nominal maximum size of aggregates as per ACI211.1-91

(6) First estimate of density of fresh concrete as per ACI 211 1-91

Maximum size of aggregate (mm).	First estimate of density of fresh concrete	sah cor crete
	Non ar entrained kyrin	Air entrained kg/m³
10	2285	2190
12 5 (20,25,40,50)	2315	2235
0.7	2355	2280
150	2505	2435

150 mm

20 mm

12.5 mm

aggregate size 10 mm

Worksbilly

(25, 40,50,70)

140

200

215

225

80-100 mm

210

230 5.5

150-180 mm | 240

Approx entrapped air (%)

02

125

80

200

205

30 -50 mm (S)(mb) content or air

Water content, agons of concrete for Iranted maximum

Non air entrained concrete

Reference Tables for IS 10262:2019 Method of Concrete mix design

80

ŏ

(Clauses 6.1.2, 8.2.4.1 and 9.1.2)

§ ₹	Exposure		Plain Concrete			Reinforced Concrete	•
		Minimum Cement Content kg/m'	Maximum Free Water- Cement Ratio	Minimum Grade of Concrete	Minimum Cement Content kg/m¹	Maximum Free Water- Cement Ratio	Minimum Grade of Concrete
=	(2)	9	(4)	(3)	(6)	9	(8)
=	M	220	0.60	\$	300	0.55	M 20
_	Moderate	240	0.60	M IS	300	0.50	M 25
	Severe	250	0.50	M 20	320	0.45	W 30
	Very severe	260	0.45	M 20	340	0.45	M 33
Š	Extreme	280	0.40	M 25	360	0.40	Z &
z	NOTES						

I Cement content prescribed in this table is irrespective of the grades of cement and it is inclusive of additions mentioned in 5.2. The additions such as fly ash or ground granulated blast furnace slag may be taken into account in the concrete composition with respect to the cement content and water-cement ratio if the suitability is established and as long as the maximum amounts taken into account do not exceed the limit of pozzolona and slag specified in IS 1489 (Part I) and IS 455 respectively.

0.65

3 Minimum grade for plain concrete under mild exposure condition is not specified

CURVE 3 CURVE 3 CURVE 2 CURVE 2 CURVE 2 CURVE 2 CURVE 2 CURVE 2 CURVE 3 CUR	0.25 Curve 1: for expe	0	o	20 60	}	6	8 8	50
VE 2	0.3 0.3 cted 28.days composered			CURVE		/		1
VE 2	FREE WATI		04	**	1		(
VE 2	0.45 ER CEMENT 33 and < 43 Nimm 13 and < 53 Nimm 33 Nimm ¹ and abo	TO.	90,	7	/	\ 0	URVE 3	A STATE OF THE PARTY OF THE PAR
	0.5 0.55 RATIO					URVE 2		The same and the s

CIVE CTOCHATU OF CONCRETE

IS 10262: 2019

Table 5 Volume of Coarse Aggregate per Unit Volume of Total Aggregate for Different Zones of Fine Aggregate for Water-Cement/Water-Cementitions Materials Ratio of 0.50

_
~
7.3
5
~
33
100

No.	Nominal Maximum Size of Aggregate mun	Volume of Coasse Aggregate pet Unit Volume of Iotal Aggregate for Different Zoues of Fine Aggregate	ate per Unit Volum Agg	olume of Total Aggregate Aggregate	for Different Zoues of t
		Zone IV	Zone III	Zone II	Zone I
(1)	(2)	(3)	(4)	(3)	(6)
1)	10	0.54	0.52	0.50	0.48
5	20	0.66	0.64	0.62	0.60
E	40	0,73	0.72	0.71	0.69

- 2 These volumes are for crushed (angular) aggregate and suitable adjustments may be made for other shape of aggregate.

 3 Suitable adjustments may also be made for fine aggregate from other than natural sources, normally, crushed sand or mixed sand may
- need lesser fine aggregate content. In that case, the coarse aggregate volume shall be suitably increased.

 (It is recommended that fine aggregate conforming to Grading Zone IV, as per IS 383 shall not be used in reinforced concrete tuless tests have been made to ascertain the suitability of proposed mix proportions

"Water content corresponding to saturated spuface dry agreeance

Table 4 Water Content per Cubic Metre of Concrete For Nominal Maximum Size of Aggregate

(Clause 5.3)

-	E	ن	_	9		.No.	2	
	40	20	10	(2)	IIIII	Aggregate	Nominal Maximum Size of	
	165	186	308	(3)//s		T	Water Content	7.

Table 3 Approximate Air Content (Clause 5.2)

_					•	- 1
10	20	01	(2)	IIIII	of Aggregate	Nominal Maximum Size
8.0	<u></u>	IJ	6)	of Volume of Concre	Percentage	Entrapped Air, as

5.2.1 The actual values of air content can also adopted during mix proportioning, if the site data least 5 results) for similar mix is available.

SARDAR PATEL COLLEGE OF ENGINEERING

26/2/23

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations July 2023

(2022-23)

Program: S.Y. B. TECH Sely TV CIVIL

Duration: 03 Hrs.

Maximum Points: 100

Semester: IV

Course Code: PC-BTC-405

Course Name: HYDRAULIC ENGINEERING

Notes:

Attempt any five questions.

• Answer to all sub questions should be grouped together.

• Figure to right indicates full marks.

Assume suitable data wherever necessary and state it clearly.

Q. No.			Questions		Points	CO	BL	PI
	the important		imilarity, geometr	type relationship? Discus ric, kinematic and dynamic		4	2	1.3.1
1	'ρ' and wisco discharge 'Q	osity of fluid '	μ', angular veloc	of a fan depends on density 'ω', diameter 'D' and nship for 'η' in terms o	1 10	4	4	2.1.2
	and distingui	sh clearly betw	een rapid closure	hammer flow in pipe line and slow closure of valve	1117	1	2	1.3.1
	(b) Explain: 1	Hardy cross me	ethod of pipe netv	vork analysis.	05	1	2	1.3.1
2	(c) Three pipes connected in series discharge water from 80 meter level to 40 meter level. The details of piping system are as given in Table 1. Considering minor losses: determine discharge, velocity and head loss in each pipe. Table 1. Pipe Length (m) Diameter (cm) Friction Factor (f)					1	4	2.1.2
	Pipe Length (m) Diameter (cm) Friction Factor (f) 1 1000 30 0.022							
	2	800	15	0.018				
	3	1200	25	0.021				
				ring normally on a series of the lever exceeds 50%.	f 10	1	4	1.3.1
3	(b)A 45 m/se vanes movin direction of r times the val	ec velocity jet g at 12 m/sec. motion of vane ue at inlet and	of water strikes we The jet is inclined in the relative verse.	vithout shock on a series of at an angle of 230 to the locity of jet at outlet is 0.8 angles a	2 10	1	5	2.2.3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations July 2023

(2022-23)

	(a)Discuss head and efficiency of hydraulic turbine and explain working of a Pelton type turbine with neat sketch.	10	2	2	2.1.2
4	(b)In an inward flow reaction turbine the diameter at inlet and outlet are 1.20m and 0.60 m. The hydraulic efficiency = 92%. Head = 45m. The velocity of flow at outlet = 2 m/sec. The discharge at outlet is radial. The vane angle at outlet is 15°. Flow width is 0.10 m. at inlet and outlet. Determine: (i) the guide blade angle (ii) vane angle at inlet	10	2	4	2.3.1
	(a)Explain: (i) Priming of a centrifugal pump; and (ii) Cavitation in centrifugal pump	05 05	2	2	.1
5	(b) The impeller of a centrifugal pump runs at 500 r.p.m. and has vanes inclined at 120° to the direction of motion at exit. If the manometric head is 20m and the manometric efficiency is 75%, determine (i) the diameter of impeller at exit, (ii) vane angle at inlet. Take the velocity of flow as 2.0 m/sec, throughout and the diameters of the impeller at exit as twice that at inlet.	10	2	4	3.1.6
6	(a)Explain unit quantities for a hydraulic turbine and state the importance of specific speed.	10	2	2	2.1.2
	(b) Derive conditions for most economical triangular channel section.	10	2	3	3.4.2
	(a) Explain specific energy and specific force diagram and discuss the importance of critical depth in channel flow.	10	3	4	2.3.1
7	(b)Determine the most economical trapezoidal channel section with side slope of 2H: 1V carrying a discharge of 12 cum/sec with a velocity of 0.85 meter/sec. Also determine the bed slope for this channel. Take Manning's 'n' = 0.025.	10	3	4	2.3.1

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to University of Mumbai)

Munshi Nagar Andheri (W) Mumbai 400058

End SemesteExam

July 2023

Max. Marks: 100

Class: S.Y B. Tech

Name of the Course: Environmental Engineering I

Course Code: PC-BTC407

Instructions:

Year

Population

1970

3,50,000

1980

4,80,000

1990

5,70,000

2010

7,90,000

2020

14,30,000

Draw neat sketches/diagrams wherever required and wherever design is asked.

Will Sun

Assume suitable data if necessary and state them clearly

· Figure on right indicate maximum points for the given question, course outcomes attained and Bloom's Level

01		Marks	CO	BL
Q1	Answer the following questions:	(20)	3-4	3-4
(a)	There is a river named Godavari that flows through Nashik. Nashik is a developing city and requires a water supply scheme. Explain the need of surface water supply scheme with components that could be considered in the water supply scheme (draw the figure for water supply scheme). What are the main parameters considered when designing a water supply scheme and how is the scheme designed.	(10)		
(b)	Nashik has many wineries and vegetable growers around it. The municipal authorities want to find physical, chemical and biological parameters of water of Godavari and assign the task to you. As an environmental engineer which parameters should be considered specifically for wineries or distillation? Explain in detail parameters (impact and measurement) to be considered while deciding the quality of water in Godavari. Also, give characterisation for the ground water of the area as it has bedrock having iron and manganese deposits.	(07)		
(c)	List the reservoirs from where MMR receives it's water from and what is the typical water supply rate for individual in Mumbai. Comment on the rate of water supply for Mumbai	(03)		
Q2	Answer the following questions:	(20)	1-4	2, 6
(a)	Based on the parameters evaluated for Godavari, draw a flowsheet of water treatment facility required for Nashik explaining the reductions of important parameters and functions of various units in detail (showing reductions of parameters required) of the facility. It was observed that hardness and fluoride is present in excess in water, list down additional units required to remove the impurities and how do they remove the impurities listed above.	(12)	1 min	2,0
(b)	Forecast the population of Nashik for 2040 based on the earlier census records using incremental increase and geometric increase methods	(08)		

Duration: 3 Hrs

Semester: IV

Program: Civil

Q3	Answer the following questions:	(20)	1-4	3-4
(a)	Design a bell mouth canal intake for Nashik region drawing water from a canal built beside Gangapur reservoir which runs only for 10 hrs a day with a depth of 2.0 m for the year 2040. Also calculate head loss in intake conduit if treatment works are 0.4 km away. Draw a neat sketch. Given average consumption per person is 180 lpcd. Assume velocity through screens and bell mouth as 15 cm/se.c and 30 cm/sec (for screens consider it is made of vertical iron bars of 20 mm dia and placed at 3 to 5 cm c to c). Design for average discharge. Assume min water level in canal to be 0.4 rn below FSL. Use head loss equation as	(15)		
	• $v=0.85 C_H R^{0.63} S^{0.54}$ ($C_H=130$ dependent on pipe material, R is hydraulic mean depthand for circular section it is d/4; and S is slope of energy line or HI/L)			
(b)	Explain the concept of vertical flow sedimentation tanks.	(05)	1-2	2
Q4	Answer the questions	(20)	1-4	3-4
(a)	2 rectangular settling tanks are to treat 5 MLD of raw water. The sedimentation period is 6 hrs and velocity of flow is 8 cm/min and depth 4.2 m. If 1.2 m depth out of 4.2 is for sediment allowance what should be length of basin and width of basin.			
(b)	Articulate where will you opt for plain sedimentation and which areas will you opt for coagulant aided sedimentation and why citing advantages and disadvantages of both the methods?	(05)		
	De sign a mechanical rapid mix unit/units (dia and height) for the area of Nashik fc _π a design flow in 2040 and considering 180lpcd average demand. Take value of μ as 1.0087x10 ⁻³ Ns/m ² . Computepower requirements and give checks	(05)		
(d)	Design coagulant aided ideal sedimentation tank/tanks for Nashik city for 2040 considering 180lpcd demand. Assume any data as required. Give required checks	(05)		
Q!5	Answer the following questions	(20)	1-4	3-4
(a)	Explain any two color and odor removal methods in detail	(06)		<u> </u>
(b)	Explain 2 desalination methods with figures	(06)	-	
(c)	A cross flow horizontal paddle wheel flocculator is designed for Nashik city for population of 2040 with 180lpcd average flow. The mean G value is 30Sec ⁻¹ and detention time is 40 min. There are three compartments with G ₁ =50sec ⁻¹ , G ₂ = 25Sec ⁻¹ and G ₃ = 15sec ⁻¹ . Basins width is 30 m. Speed of blades relative to water is 0.8 times peripheral speed of the blade. Cd is 1.5 Find (1) Dimensions of the basin (2) Number of blades and geometry of basin	(08)		
	(2) Number of blades and geometry of basin (3) Power requirements (4) Rotational speed of shaft			
'Q6	Answer the following Questions	(20)		
(a)	Design rapid sand filter for Nashik's design flow (with under drains and wash water troughs) for 2040 with 180 lpcd average demand.	(15)		<u> </u>
(b)	Develop a plan for disinfection of rural water well. Rationalize your plan	(05)		
Q7	Answer the following questions (any 4)	(20)	1-4	1-4
(a)	Explain the (a) Ion exchangers (b) Fluoride removal	(05)		
(b)	Types of water distribution system	(05)	T	

(c)	Explain the process of filtration and backwashing with a figure		
(d)	List the various water distribution exoton with G	(05)	
-	List the various water distribution system with figures and explain the one or two existing in Mumbai	(05)	
	Explain chlorination. If the chlorine dose is 5 mg/L and residual chlorine is 3 mg/L what is chlorine demand? Is the dose of residual chlorine appropriate? If the Nashik region requires the dose of 5mg/L what is the requirement of chlorine per day	(05)	
(f)	Calculate lime and soda ash for hard water containing following parameters (a) CaCl ₂ = 50 mg/L (b) MgHCO ₃ = 40 mg/L for Nasik for a day. Consider 100	(05)	
1	percent purity JLA SHEET		

 $P_n = P_o \left[1 + \frac{r}{100} \right]^n$ A1 = 27WLR=Q/B Ca=40 WLR= Q/2лR C = 12DT = V/Q $P_n = P_o + n\bar{x} + \frac{n(n+1)}{r_1} - y$ 0 = 16 $SOR = 12-20 \text{ m}^3/\text{d/m}^2$ S = 32 $V = 0.849 C R^{0.63} S^{0.54}$ Cl=35.5 $SOR = 24-30m^3/d/m^2$ $\log_{e}\left[\frac{P_{s}-P}{P}\right] - \left[\frac{P_{s}-P_{o}}{P}\right] = -kP_{s} * t$ H=1 $WLR = 200m^3/m^2/d$ Na=23 DT = 20 to 50 minFe=55.5Minimum distance between successive baffle $P_n = (P_o + n\overline{x})$ Mg=24 walls 0.45 m(d) $r = \sqrt[l]{r_1 * r_2 * r_3 * \dots * r_n}$ Si=14 Clear opening at end of baffle and basin wall H:D=2:1=1.5(d)SA=volum/a/SOR $G = 300-700s^{-1}$ $P = \frac{1}{2} C_d \rho. A_p. V_r^3$ 0.5 min to 1 min $C_d = 1.8$ for flat paddles $\rho = 998kg/m^3$ $v_r = (1 - 0.25)v_n$ Ratio of length to diameter of lateral ≤ 60 $v_s = \frac{1}{18} \frac{g}{v} (S_s - 1) * d^2$ Q/A; Q/ perimeter; Q/b; V/Q Spacing of laterals= spacing of orifices= 150 to $V = D^2 (0.011D + 0.785H)$ 300 mm Value of $v=1.002 \times 10^{-6}$ m²/sec Rate = 3000-6000litre/hr/m² Dia of perforations 5 to 12 mm (spacing 80 mm for 5 and 200 mm for 12mm) $P/\mu V = C_D A \rho v^3 / 2\mu V$ $\left| \left(\frac{8\beta}{f} \right) (S_s - 1) dg \right|$ Total area of perforations < 0.5 Total c/s area of laterals Total area of perforation = 0.002 to 0.003f' = 0.025 - 0.03Entire filter are a $g=9.8m/s^2$ Area of manifold= 1.5 to 2 times laterals Rate of filtratio n = 300 to $500l/hr/m^2$ Rate of filtratio $n = 3000-60001/hr/m^2$ Max. demand= 1.8 Q $P = F_D * v_r$ $G * t = \frac{V}{Q} * \sqrt{\frac{P}{\mu V}} = \frac{\sqrt{PV/\mu}}{Q}$

ALL THE BEST

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to University of Mumbai) Munshi Nagar Andheri (W) Mumbai 400058

End Semester Exam

July 2023

Max. Marks: 100

Class: S.Y B. Tech

asi min

Name of the Course: Indian Traditional Knowledge

Course Code: MC 002

Instructions:

Draw neat sketches/diagrams wherever required

Figure on right indicate maximum points for the given question, course outcomes attained and Bloom's Level

All the best

01	A			Mar ks	CO	BL
Q1	Answer the following questions:				1-2	1-3
(a)	Explain the concept of traditional knowledge and it's importance. Explain it's components.			(10)		
(b)	Write a note on traditional water ha	rite a note on traditional water harvesting systems used and in use today.				
(c)	a Austro Asiatic	i	Munda, Khasi	(05)	 	
	b Indo Aryan	ii	Devnagari	(00)		
	c Dravidian	iii	Assamese			
	d Tibetan Burman	iv	Hindi			
	e Khariboli	V	Tamil			
Q2	Answer the following questions:					
(a)	Match the following	*		(20)		
	a Bhaskaracharya	i	Connection of Physical Well	(05)	3	1-2
	b Kanad	ii	being and mental health Motion of planets			
	c Bhardwaj	iii	"Anu" (unbreakable particle)	=		
	d Aryabhatta	iv	Lilavati and Bijganit			
	e Charak	V	Vimana Shastra			
(b)	Explain similarities of typical inventions and discoveries supposed to made by specific sages with western discoveries and inventions.			(10)	2-3	2
(c)	Explain the context of Mahabharata in regards to nuclear weapons. Also what is the importance of 30 th chapter of Shrimad Bhagwatam.			(05)	3-4	2
Q3	Answer the following questions:			(20)	1-3	4
(a)	Explain the importance of any 3 local medicinal plants in Ayurveda and diseases cured by them.			(10)		
(b)	Write a note on vernacular architecture. Explain the elements of vernacular architecture in any building or structure observed by you in India			(10)		

Duration: 3 Hrs

Program: Civil/Elect

Semester: IV

(a)		ver the following questions:					
(a)	Expla	Explain all 4"Vedas" in detail. What are the sections of Vedas.			(10)	2-3	2
(b)	Fill is	the blanks			(0.5)		
	i. Sam Veda is chanted by priests.			(05)	ļ		
	ii. The term means those who sit near.				-		
		iii. The hymns of are dedicated to five elements of nature iv. The is second section of Vedas which try to explain the importance of hymns in Samhitas v means liberation from the cycle of birth and death according to Rig Veda					1
							-
(c)	Matc	n the following			(05)		
	a	Ayurveda	i	Yajurveda	. ,		
	b	Nirukta	ii	Sam Veda			
	C	Gandharvaveda	iii	Upanga			
	d	Dhanurveda	iv	Rig Veda			
	l e	Yoga	V	Vedanga			ļ
05	Ancu	er the following questions			(20)	3-4	
$\frac{\sqrt{3}}{(a)}$		in in details the following classical d			$\frac{(20)}{(10)}$	3-4	-
	dress/make:up, unique features, instruments accompanied (a) Bharatnatyam (b) Kathak (c) Kathakali (d) Kuchipudi						
(b)		names of any 10 states with specific	folk o	lance related to it	(05)		-
(c)	Explain the term yoga and it's origin. Explain the role of yoga Asanas in day to day life of human being.				(05)		
Q6	Ans wer the following questions					3-4	
-	Explain the teachings and learning of Guru Nanak Dev				Ĭ	 	
_	W'rite a note on the journey of Prince Siddartha to Gautam Buddha.			nak Dev	(05)		1
(a) (b)	Writ	e a note on the journey of Prince Side	u Na Iartha	nak Dev a to Gautam Buddha.	(05)		
(a)	W'rit Expl	e a note on the journey of Prince Side ain the meaning of following dohas कहे कुम्हार से, तू क्या रौंदे मोय। इन ऐसा आएगा, मैं रौंदूगी तोय॥	u Na Iartha	nak Dev a to Gautam Buddha.	(05) (10) (05)		
(a) (b)	W'rit Expl माटी र एक वि	e a note on the journey of Prince Side ain the meaning of following dohas	u Na lartha	nak Dev a to Gautam Buddha.	(10)		
(a) (b) (c)	W'rit Expl माटी र एक दि गुरु गे बलिह	e a note on the journey of Prince Side ain the meaning of following dohas कहे कुम्हार से, तू क्या रौंदे मोय। देन ऐसा आएगा, मैं रौंदूगी तोय॥ विंद दोऊं खड़े, काके लागूं पांय। ारी गुरु आपकी, गोविंद दियो बताय॥	u Na lartha	nak Dev a to Gautam Buddha.	(10) (05)		
(a) (b)	W'rit Expl माटी व एक दि गुरु गे बलिह	e a note on the journey of Prince Side ain the meaning of following dohas कहे कुम्हार से, तू क्या रौंदे मोय। हेन ऐसा आएगा, में रौंदूगी तोय॥ विंद दोऊं खड़े, काके लागुं पांय।	u Na Iartha	nak Dev n to Gautam Buddha.	(10)		

ALL THE BEST